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A Neural Network Architecture for Implementation of Expert
Systems for Real Time Monitoring

1 Executive Summary .

Research in neural networks and expert systems has progressed tremendously inrecent =
years due to availability of economical ‘and powerful computatlon facxhtxes and simu- -~ e

lation models. The conventional method of implementing expert systems has many =~ = -

deficiencies such as requiring huge memory (the number of rules increases exponen-

tially as the number of inputs increases), slow' search due to sequential inferencing

and implementation based on higher-level language usage. These problems become

even more severe when expert systems are to be applied to the areas of real-time

control and monitoring. In this project we-developed a set of new architectures for * . =i~

these real-time applications. These architectures combine the advantages of neural
networks (massive parallelism and simple structure of each neuron) w1th the expert

systems to achieve fast 1nferenc1ng and easy unplementatmn

Since neural networks have the advantages of massive paraIlehsm a.nd sunple ar-

chitecture, they are good tools for implementing real-time expert systems. In a rule
based expert system, the antecedents of rules are in the conjunctive or disjunctive
form. We constructed a multilayer feedforward type network in which neurons rep-
resent AND or OR operations of rules. Further, we developed a translator which can
automatically map a given rule base into the network. Some of the results of this
work were presented at [EEE International Conference on Systems Engineering and
appear in the proceedings of the conference{l]. Also, a paper describing the complete
results has been submitted to the Journal of Intelligent Manufacturing{2]. Copies of

these papers are attached as appendix. -
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During the above work, it became clear to us that a similar mapping would be

highly beneficial for fuzzy expert systems’.. Fuzzy logic has been shown to be a

superior tool for information processing and inferencing especially when incomplete = -

or imprecise information are involved. We have proposed a new and powerful yet

flexible architecture that combines the advantages of both fuzzy expert systems and -

neural networks. This architecture uses the fuzzy logic concepts to separate input data
domain into several smaller and overlapped regions and other properties such as fuzzy
sets, membership functions etc. and the simple architecture and learning capabilities
of neural networks. The result is an architecture which has the advantages of both
the areas without their individual drawbacks. The architecture could be used as an

alternate implementation for real-time applications. Initial results from this work will

be presented at the JEEE International Conference on Systems Engineering, August. .=

1-3,1991[3]. B ,
The fuzzy expert system and neural network are both used for mapping of lin-

ear or nonlinear systems. The similarities exist not only in the aspect of causality

(conducting inferencing through structural ways), but also in the aspect of method-

ology (breaking input domains into smaller subsets, sparse and regular interconnec- . .. .-

tions between input and output domain). We investigated these similarities of fuzzy

expert systems and neural networks by comparing fuzzy expert systems with Cere-

bellar Model Articulation Controller (CMAC) and multilayer feedforward networks.- - -

Through this work, we were able to show that .the CMAC architecture is nothing

but a simple version of a fuzzy expert system. Also, a fuzzy expert system can be

shown to be a number of properly interconnected multilayer feedforward networks.. = e s

The later implies that we can indeed expect better performance from fuzzy expert

systems as compared to a simple multilayer feedforward network. Some of -these re- . .- ..

sults will be presented in the International Conference on Artificial Neural Networks-.-:

1We are describing research which are in the xxutxa.l stagu a.nd Iookmg fcr further fnndmg to continue -

work on this exciting topic. Tyl T e e e T
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in Engineering, November, 1991[4].

One important feature of a fuzzy expert system is the rules in its rule base. The
rules are obtained by abstracting the knowledge of the so called experts of the con-
cerned system. Because of human factors, the rules sometimes do not precisely rep-
resent the knowledge or the knowledge itself maybe incomplete or imprecise. To
eliminate the effect of these unnecessary but unavoidable fuzziness in the rules, we

introduced a weighting system which can automatically adapt weights that are at-

tached to each of the rules. The results indicate that good performance can indeed = =

be obtained by adiaipitmg the initial a,prBXiiﬁate rules. This work has beett corn-
pleted and will be presented in a conference[5] and also will be submitted for journal
publication.

The grant served well in its purpose of supporting graduate students in their
research and thus enabling the training of Ph.D. level scientists who would serve the
country for many yéa.rs to come.. Mr.. Song Huang who worked on certain projects
subbor'ted by this grant is expected to compl'été;hié 'Ph.D. in a couple of months[6].
Mr. Shi Zhang, another research assistant, is working in his Ph.D. and would use part
of these results in his dissertation[7]. Both natives of mainland China, are expected
to settle permanently in this country. The grant also partially supported two other
doctoral students, Phillip Pace[8] and Brahmaji Potu[9] who are presently working

at General Dynamics and IBM, Texas Austin respectively. =@ <=:m oo wines
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IMIPLEMBNTATION OF RULE-BASED EXPERT
SYSTEMS FOR TIME-CRITICAL APPLICATIONS
USING NEURAL NETWORKS

P.A. Ramamoorthy and Song Huang - - . ' -

Department of Electrical & Computer Engineering,
University of Cincinnact, M.L. %30
Clacinnati. Chio 45221-0030

ABSTRACT

Expert systems, a subset of artificial intelligence or knowl-
edge based systems, have found applications in a number of
practical systems. They use the specialists knowledge about
a particular problem to make intelligent decisions. Most ex-

vant knowledge for a given set of information and to reach
a conclusion. The design of inference engines makes a big

_diﬁ'erence among different expert systems. The goal of our

pert systems employ the IF-THEN rules to_represent their _ -

knowledge bases which form the core of .systems. The

number of rules required for useful systems can be very large.

Thus leads to an increase in the memory requirements as weil
as a deterioration in the speed performa.nce. How , for

time-critical applications, there is the need to reach proper -

solution or decision within a small fixed amount of

system is to design a more efficient expert system whxch utx-
lizes the properties offered by neural networks. RS

ibanal clement.s{2} [n Figure 1, we have shown
of one element of neural networks. . .

Thus, efficient representation of knowledge base and imp et Quepat
mentation of inference engine is very critical ia such appli-

cations and is an active area of research. Neural networks, T, .
through their massive parallelism and relatively simpler » ’

chitecture, can be used in such time-critical applications 4nd

sification and present some examples. -~

INTRODUCTION

There is tremendous interest in i
tions of expert systems{l] - syst
amount of expert knowledge ab
solve problems in that domaj
lnghly appealing for real-ti
sis of dynamic systems as
The response of human

utilize a significant
t a particular domain to
Some expert systems are-
control, maintenance, dugno-
alternate for human supervision.

ustry in the applica- ..

ors in such time-critical appli-— -—

cations may vary considerably leading perhaps to omission of .

relevant information. incoasistent responses and even panic.
The expert systems caa respond consistently and will also be
able to arrive at proper decisions at a much fast rate, Other
attributes of expert systems are extendability, lexibility, pro- ..
vision f{or explanation and ability to work on uxcomplete or -
inexact information.

A typical expert systemn contains faur major parts, knowl-

edge base, inference engine, krowledge acquisition, and ex- . o

Fig.l. Computational element of neural networks.

Here, all inputs z,, r3, ..., Z« of the system are connected
to every elem\?u and the output of the element is obtained
as

i y-f(erw- ).

Here w; is the weight for input 2, T is called offset or thresh-
old and f is some nonlinear function. A special case of this
element is a threshold logic gate (T-gate) or perceptron, in
which all inputs and output are limited to binary acd the..

___output function [ is a bmary funcuon too. ngu 2 gives

planatory interface. For real-time systems, the explapatory

interface with human operators may not be needed because - --

of the time overhead invoived. And the knowledge acquisi-
tion module could be a hardware interface between the ex-

pert system and the dynamic system to be mouitored. The. ...

job of inference engines is to control the selection of reie-

CH2767-2:89.0000-0147 $1.00 *

s ommemmLd oAt 3 e

the symbol of a T-gate. . -,
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AUTOMATED IMPLEMENTATION OF RULE-BASED ) 33
EXPERT SYSTEMS WITH NEURAL NETWORKS FOR /

TIME-CRITICAL APPLICATIONS .- ...

P.A. Ramamoorthy, Song Huang and Girish Govind
Department of Electrical & Computer Engineering
University of Cincinnati,--M.L. #30 . .:: roev-:

Cincinnati, Ohio 45221-0030

ABSTRACT e e Eemana

In fault diagnosis, control and real-time monitoring,‘ both

Wl

timing and accuracy are critical for operators or machines to reach
proper solutions or . appropriate actions. Expert systems are
becoming more popular in the manufacturing community for dealing
with such problems. In recent years, neural networks have revived . - -
and their applications have spread to many areas of science and
engineering. A method of using neural networks to implement rule-

based expert systems for time-critical applications is discussed in

i

this paper. This method can:convert a given rule-based system into " :
a neural network with fixed weights and thresholds... The rules .
governing the translation are presented along with some examples.

We also present the results of automated machine implementatiom of _ .. .ur=
such networks from~ the . given rule-base. This significantly . = =iz

simplifies the translation process to neural network expert systems

0

from conventional . rule-based - systems. Results -comparing the"

1



performaﬁée of proposed apptoach based on neural networks vs. the
classical approach are given. In this paper, the possibility of
VLSI realization of such neural network expert systems is also

discussed.

1. INTRODUCTION

:1. pe st T mmee

In recent years, more and more automated manufacturing systems
are being developed. Expert systems are playing important rules in
theséf highly complex systems for decision-making, real-time
operational control, fault diagnosis and so6 on (Heragu and Kusiak,
1987). Expert systems are computer programs that utilize a
significant amount of expert knowledge about a particular domain to
solve problems in .that: domain. For example, they are being
considered or applied to problems such as machinery monitoring,.

part design, robot control, process control, fault diagnosis and so

on. Such expert -systems are -highly ~“appealing for: real-time -

monitoring of dynamic systems as an alternative to human

supervision. The response of human operators in such time-critical .-

applications may vary considerably leading perhaps to omission of
relevant information, inconsistent responses and even panic. The
expert systems can respond consistently and will also be able to
arrive at proper decisions at a much fast rate. Other attributes of
expert systems are: expendability,. -flexibility, “provision for.
explanation and ability to work on incomplete or inexact

information (Harmon, Maus and Morrissey, 1988).

2
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A fully established expert system contains four major parts
(Hayes-Roth, Waterman and Lenat, 1983), they are knowledge base,
infefence engine, knowledge acquisition, and explanatory interface.

The knowledge base and the inference engine are the core of én

expert system. For real-time systems, the explanatory intgrface B
with human operators may not be needed because of the time overhead
involved. And the knowledge acquisition interface  could be a.... ..
hardware module between the expert system and the dynamic system to

be monitored. Figure 1 shows the diagram of a typical expert

system (Forsyth, 1984). A knowledge base contains facts and rules.

Facts are short-term information that can change rapidly, and rules

are long-term information about how to generate new facts or

hypotheses from what are already in the knowledge base.
Most expert systems employ an IF-THEN format to represent -»z-xt =

rules in the knowledge base. The IF-THEN rules are of the following . .-
form:

IF (antecedents) - L ATELTTZERTE S

THEN (consequent).
Rules are conditional .statements :i.e:.. if  the antecedents are:~ =z
satisfied then the actions defined by the consequent part of the ... .-
rules should take place (Hayes-Roth, 1985). Two rules may fire at
the same time if their antecedents are satisfied at the same time .
provide that one's consequent is not in the other's antecedents.
This property invites the possibility of: parallel implementation of-_ ruz_ =
such rules given a proper architecture. However, most expert

systems implement rules in a sequential manner, rules fire one by



ona.

The function of an inference engine in an expert system is to
control the selection of relevant'knowledge for a given set of
information. It takes rules and facts from the knowledge base as
data and finds an appropriate solution. There are several infgrence
or control strategies being developed for inference engines. The
most used strategies are, forward chaining which involves reasoning
from facts to goals, backward chaining which propagates from goals
trying to reach the facts, and hybrid chaining which combines the
previous two strategies and propagates from both sides. The design
of an inference engine is very crucial since it can affect the

performance of an'expertrsystem significantly. - -

There are two. distinct phases in applying expert system -

concepts to a problem. The first is the development of an expert

system as four components as indicated before. The second phase is -

the actual implementation of the expert system on'a computer. The
number of rules required for a useful expert system can be very
large. Thus leads to an increase in the memory requirements as well
as a deterioration -in its speed performance. In addition, most
expert systems are written on high~level interpretive languages,
such as LISP and PROLOG, thus requiring fairly expensive computers
to run on, and the implementation is sequential in nature. That is,
given a set of facts, the inference engine selects a rule for
examination for firing, and if the rule is fired, the resulting
actions or conclusion is inserted into the knowledge base. Then the

inference engine proceeds to the next rule and so on until all the
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rules in the knowledge base are examined.

The implementation as explained above has serious consequences
on the speed performance of an expert system. As the number of
rules in an expert system increases, the time required to cycle
through the rules as many times as may be dictated by the facts,

can increase enormously making the expert system unsuitable for

time-critical applications. For time-critical applications, there ::.:::

is a need for reaching proper solutions or decisions within a small
fixed amount of time. In these situations, speed and intelligence
are two primary factors for operators or machines to make right
decisions or to perform proper actions. In our proposed system,

both intelligence and timing are considered. In fact, our method

combines the knowledge base and inference engine of expert systems

together thus significantly reducing the averhead processing within =

the expert system. ~ 7. I=oooe

.2. Neu work

The architecture of neural networks is based on our present -

understanding of our brain's biological nervous systems and

presumably achieve good performance via dense interconnection of

simple computational elements (Lippman, 1987). Since these networks
have characteristics analogous to human intelligence, using them as
a tool to implement expert systems seems quite logical, because

after all, expert systems are computer realizations of human

their massive parallelism and relatively simpler architecture are

advantages in implementing time-critical expert systems.

intelligence over a particular domain af expertise. In additionyzz._... _:



Figure 2 gives a single element of the neural network, the

element is also called a neuron. A set of inputs labeled x,. Xor

e2e. X, are network inputs which are connected to the neuron
through a set of associated weights w,. Ww . w.. Inputs

correspond to the facts as incoming signals and weights represent
the strengths of the importance of inputs. The outgoing signal y is

obtained as e T T =

-4
-1

Where T is called offset or threshold of the neuron, and £ is some ...

nonlinear function.: A special case of this. element-is a threshold -

logic gate (T-gate), also called perceptron, in which all inputs

and outputs are limited to binary-numbers.and the output. function ":=

£ is a binary function too. Figure 3 shows the diagram of ‘a T-gate.

The output function of a T-gate is defined as ~— ~ =~ ...~

e 0 if igxiwi T o
1 otherwise

[
TF A e e

input X; is connected to every neuron y; and the weight between them .. .. ..

is w;;. The output function is given as the following

a
Yj=f(}:;xiwlj-Tj)

Where T, is the threshold’value' of the. jth neuron in the net. Our:-::

proposed expert system is a multi-layer network like the one  in-
Figure 5. This kind of networks are formed by cascading two or -
6

awlia dan it = i

e

Figure 4 shows a one-layer neural network with n neurons. Each’ =o n &%



more layers of neurons. The multi-layer neural network can
accomplish some more dedicated tasks one-layer network might not be
able to do. However, the algorithms for systematic training of
multi-layer networks may be more complex. In our network, weights
associated to all neurons are fixed binary values which are

directly obtained from the given rules. The thresholds are also

determined by these rules, they are binary too. Therefore we .-

omitted the painstaking network training procedure. This feature of
neural network design is unique, since we are dealing with the
real-time situations and the knowledge base is already known.

In the next section, we describe how to construct a neural

network from a given rule-based expert system. And in section

three, the explanation of- the ‘automated :translation- == an - =

interpreter is given:. Then examples to test the proposed system are

presented along with the performance comparisons between our system .= =

and conventional expert systems. The conclusion section includes

the summary and the possibility to realize the proposed expert -

system by hardware using VLSI technology.

2. CONSTRUCTING NEURAL NETWORK EXPERT SYSTEMS e

. ~bas Systems - sification - - -~ oo

As stated before, most expert systems are using IF-THEN rules

to represent their knowledge. The conditional statements of the -

antecedents and consequent contain some relational operators to

connect several facts together. These operators are AND, OR, and



NOT, all other binary relations can be represented by these
three.

The classification expert systems are very useful for real-
time applications such as diagnosis, control, maintenance and
process monitoring. In a classification system, most or maybe all
inputs are questions which can be answered by either YES or NO
(TRUE or FALSE). This feature of classification expert systems is
similar to that of a threshold logic gate in which all inputs and
output are binary values only, and a "1" can used to represent YES
or TRUE, while a "0Oo" for NO or FALSE. However, classification
systems may not be limited to binary problems only. Any problems,
discrete or continuous, can be approximated by such a model by
proper coding of the inputs "and outputs (Gallant, 1988). For
example, we can divide continuous variable 'age' into a number of
binary variables, INFANT, CHILD, YOUTH, MIDAGED, and SENIOR. Each
of these variables corresponds to certain range of age:

IF (age < 1) ST e THEN INFANT is TRUE;

IF (age > 1 AND age £ 12) THEN CHILD is TRUE;

IF (age > 12 AND age £ 30) . THEN YOUTH is TRUE;

IF (age > 30 AND age < 60) THEN MIDAGED is TRUE;

IF (age > 60) THEN SENIOR is TRUE.
Therefore, age=16 would cause YOUTH to be TRUE, @r YOUTH=1. Any

continuous variables can be approximated by classification systems

to arbitrary precision using this coding technique theoretically. -

Therefore restricting ourself to classification expert systems dose

not limit our abilities for solving continuous or complex problems. -
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An AND/OR tree is an equivalent way to show what a set of
antecedent-consequent rules can do (Winston, 1984). In which, the -
consequent of one rule is connected to other rules as antecedents.
Figure 6 is an example of such a tree. The rectangular nodes
represent output assertions or consequent of rules they associate,
and the circular nodes are for input data or intermediate results,” .7~
or antecedents of rules. If there is an arc appearing to join
several or all descendent nodes of a higher-level node, then thi§
node is called an AND node. Nodes without arcs to connect their
descents are OR nodes. Any collection of IF-THEN rules defines such
a tree. Therefore, for any given expert system, if the collection
of IF-THEN rules are known, '‘a AND/OR inference tree(net) could be .. _:
always constructed which supplies a graphic view for connections of . . -zor
its elements. For the design of time-critical neural network expert .. . =lw
systems, we assume that the rule-bases of the systems are
available. Thus there exists an AND/OR inference tree for each . <z
expert system. Our main goal is to convert this kind of inference
network of a given.rule-base into a neural network.

For large complicated. expert systems, the number of
intermediate results can be large. These intermediate results may
be used to produce other intermediate outputs or final outputs, or

for just explanatory purposes. In some expert systems, there are a

]

lot of intermediate.outputs to serve as. tools to break the large .
rules into several small ones, and some of them are merely for the

purpose of conjunction of rules. If we can cut the number of these



intermediate results nodes to the minimum, then there would be a
big gain in speed and efficiency. In our design of neural network
expert systems, we make the rearrangement of the connections,
inputs and outputs to minimize the intermediate results or even
eliminate some dummy rules served as conjunctions of other rules.
3. W e

From the discussion of previous section, the whole expert

system's rule-base can be decomposed into AND connections and OR

connections. Then the work of constructing a neural network type

expert system reduces to transforming the AND/OR graph of the

expert system into networks composed of perceptrons. As indicated

above, the inputs and outputs of the system are either binary

values or reccded into such values. Thus the femaining task is to-

find the number of tYpés of perceptrons needed. Generally, we need- -

only two types of. perceptrons, one for AND operations, and the
other for OR operations. We can call them AND T-gate and OR T-gate.
The mixed operations..of AND/OR can be represented by the
combinations of these T-gates.

The procedures of assigning. weights and threshold values to
different T-gates are given as the following. We may also introduce

negative weights into the T-gates for the purposes of performing

negation operations. But for the sake of simplicity, we limit the

weights to binary values. If a negation is needed for a input data

of the system, we can create a new input data for it. For example,

if "moving" is an input data of a robotics control rule-base, and

its negation"not moving” 1is also needed in the input fact set, we

10



then can set two input values, MOVE for "moving", and NMOVE for
"not moving".
L] ] - a

For AND operations, the weights of corresponding T-gate are

either one or zero. Weight "one"™ is assigned to inputs which take -

part in the AND operations, while "zero" to others. The threshold

value of the AND T-gate equals the number of  inputs take part in

the AND operation. Figure 7 is an AND T-gate for the following
rule:

IFr A and B and C and E

THEN X .

Here, A, B, C, D,~and E are inputs, and X is the output. Since

inputs A, B, C, and E are -in ‘the AND operation_s-- of ~the rule, -:=

therefore they are assigned with weight "one". Input D does not
take part in the AND operation, so its weight is "zero". Usually we
do not explicitly put zero inputs into the graph just like we do
not put unnecessary inputs into rules. But for neural networks, all

the inputs are connected into neurons no matter they are needed

inputs or not. The: threshold value of this AND T-gate is four;:

because there are four inputs in the AND operations. The output X
of this T-gate is one if A, B, C, and E are all cne. Otherwise, X
is zero.

2.2.2- QB I"QQE& [

For OR operations,.the. weights_assignment is the same.as for. w.. s

the AND T-gate. The threshold value of the OR T-gate is always one.

This means that the output value of the OR T-gate will be one if

11



any of its inputs is one. Zero weights are assigned to those inputs
which do not take part in the OR operations. Figure 8 is an OR T-
gate for the following rule:

IF Sor TorUorW

THEN Y .

Here, S, T, U, V, and W are inputs, and Y is the output. Since

therefore they are assigned with weight "one". Input V does not
take part in the OR operation, so its weight is "zero". The output
Y of this rule is one if any of S, T, U, or W is one, otherwise, Y
is zero. : -

L] L] k] D - t

For a small number of mixture of AND with OR operations, a one -

layer T-gate 1is possible to simulate -these operations.- But
generally, if the antecedent logic expression contains both AND
operations and OR operations, then the separation of ANDs and Ors
is necessary. We use a two-layer network to represent the
corresponding rule. The first layer contains several AND T-gates
(or T-gates, this depends on the given rule),:and the second layer
only has one OR T-gate (or one AND gate). Fiqure 9 shows the mixed
T-gate network for the following rule:

IF A and B or € and D

THEN X .
Here, in the first layer, there are two AND T-gates. One for the
operation "A and B", and one for "C and D". The weights and

thresholds of these two AND T-gates are assigned according to the

12

inputs S, T, U, and W are in the OR operations of the rule,-- -:



rules given in section 2.3.1. The outputs of these AND T-gates are
the inputs of the second layer OR T-gate. The weights and the
threshold value of this OR gate are all "one" according to the
rules in section 2.3.2.
As stated above, some simple mixed rules can be converted to
one layer T-gate network. For example, rule:
IF A and C or A and D- =iw: o ow 7 ATl
THEN X .
The antecedents can be written in another form: "A and (C or D)".
~ Then we will be able to use one T-gate to simulate this rule-as in- "~ "~
Figure 10.
The weights of these one layer T-gate networks are not binary -

anymore. R AN T S

3. STRUCTURE OF A MACHINE TRANSLATOR 7.  ~ -- “"77—° ~ ~

Since the weight and threshold assignment is very reqular, we =~ ~:-- =2
can automate the process of obtaining the perceptron based neural
network form any rule-based classification:expert :systems.: The =.:o 7=
weights and thresholds of neurons in these networks are obtained
directly from the given rule-base. Therefore, there is no
painstaking training . procedurs - for . determining weights ™ and ' ‘-7
thresholds for the networks. The translation is an off-line
process, so the time used.on translation will not affect the speaed ~ri<

performance of the system. - - -° - o

Figure 11 is a general diagram which “shows the required ——~ -
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translation steps the designed automated translator needs to
accomplish. The precode process is not included for continuous data
or for data have multiple values. The continuous or multi-valued
data can be converted to binary data by the methods introduced in
section 2.1.

This automated machine translator is divided into two major
parts, a compiler which reads in the conventional rule-based
knowledge system and separates inputs, outputs and the rules, and
a converter which reads in the intermediate results from the
compiler and constructs a neural network architecture. The process
involved in the design of this machine translator is explained in
this section.

3.1. compiler

The compiler of this tfénslator performs the operations much
like a conventional compiler dose which takes source code as input
and generates machine code as output. The difference here is that
the source code is a set of rules and the output of this compiler
are intermediate information for the use of next sta;e of the
translation. The design modules of this compiler are given in
Figure 12. The explanations of these modules are presented below.
3.1.1. Texical Analvsis

This module reads in the input file which contains the rule
set of a conventional expert system. The rules in the input file
are modified from their original forms. Since there are many
different expert system shells or tools specifying rules, using any

of those representations of rules as our format is not appropriate.
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Thus, we choose the one which is most close to the normal written
form for IF-THEN rules, which is given as below:
RULE n: title
IF (condition 1) op (condition 2) op ...
THEN (solution 1) (solution 2) ...
CF =4 .
Where "n" is a integer used to number rules, "title" gives the name
or a short message of the rule. The relational operator "op" may be
AND or. The certainty factor "CF" specifies the probability of a
rule to be true when it is fired, and its wvalue "d" is a decimal
number ranging from zero to one. This certainty factor is not used
in our system, including this factor in it is for further study of
such systems with fuzzy concepts. The following example shows that
how to modify a given rule to the form which is recognized by the
compiler.
Given a automobile diagnosis rule of the following:
R7: IF the battery and connecting wires are not at fault,
and you turn the headlights on and try to crank
the engine, and 1lights remain bright or dim only
slightly,
THEN check the starter, solenoid and wiring.
The modified rule would be:
RULE 7: Starter, solenoid, Wiring Trouble
IF (BTY = OK) AND (BTY_CTG = OK) AND (HL = ON) AND (EGN =
CKG)

AND ((LTS = BRT) OR (LTS = DIM_S))

15



THEN (CHK = STAT) (CHK = SLD) (CHK = WRG)
CF = 1.0 .
The translation of names and features of the original rule is

easily understood.

The lexical module reads the characters in the source file and

groups them into a stream of tokens in which each token represents
a logically cohesive sequence of characters (Aho, Sethi and Ullman,
1986). Such tokens may be a keyword (IF, THEN, CF, etc.), an
operator (AND, OR), a number, an identifier (CHK, BTY, HL, etc.) or
a parentheses. This module also checks if there are any lexical
mistakes, such as missing-. keyword, unpaired parentheses,
mistypings. Zowhoo .

. S o] s EEREn REsy -

A symbol table is a data structure containing a record for -~ -

each name or identifier, with fields for the .attributes of the
name. The symbol table is the core of our compiler which keeps
track of each name and its attributes such as type, rule numbers in
which this name appears, class, and size. When a name in the source
rule-base is detected by the lexical analysis module, this name is
entered into the symbol table and along with some of its
attributes. However, all attributes of a name may not be entered at
once, since it maybe appear in several rules.

One important attribute of the names is the their types. One

name can have one of three.different .types, input, output, .or: .._..

intermediate. The input-type names are the input data of the

system, which will also be the input data of the final neural
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networks. While the output-type names are those 1leading to
conclusions or actions taken by the system, they are the outputs of
last-layer neurons of the final neural networks. The intermediate
names are subject to be eliminated by the optimization module if
possible, since they might be only used locally as conjunctipns of
two connected rules.

Another feature of the names is their class. If a name is used
in an AND operation, then it will have an AND class. An OR class is

defined similarly for a name. If a name is used in both AND OR

operations, it will be assigned AND/OR class. This class attributes -

will be useful for weights assignment during the conversion part of

the translation.

. ic ] TMIIoCmL ANy YLs

Since the compiler is mostly dealing with logical expressions,: - -

it is needed to have a phase.in..the.program to perform logical
operation analysis. During this operation, the program will
classify the classes of names or symbols on the symbol table. For

some complicated rules, the logical analysis module will perform

logic simplification operations to them. After this process; the - -

conditions of_ rules should be in either conjunctive normal form
(CNF) or disjunctive normal form (DNF) (Davis and Weyuker, 1983).
Two examples to show these two normal forms are given below.

CNF: (A or B) and (C or D) and (E or F)

DNF: (A and B) or (C and.D) or_(E and F) O = =z (i 5% o

From the discussions of previous sections, these two forms can be

represented by corresponding T-gates. - - -
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If the conditions in a rule is very complex and one name is
used for more than once in the same rule, then the break-down
process might be needed to separate this rule into two or even more
sub-rules. This is considered to be a setback of the design, but
most rules in practical applications are simple and can be
simulated by only one or two layers of T-gates.

. i alys

Most rules are given in a sequential order. This means that
" the output of one rule is one of the inputs of other rules, unless
this rule is the output rule itself. The compiler needs to know
what orders between rules are. This module provides the information
which links rules together. It also marks the first layer (input)
rules and the last layer (output) rules.

Usually, rules are connected in the feedforward style. Facts
or input data yield sub-goals or intermediate results, these
results are fed into next level rules, and finally reach the goal
or output data. In the conventional expert system, inference engine
fires rules one by one. The inferencing process stops when there
are no more rules to be fired. Therefore, it will not cause problem
if one output is fed back to higher level rules (in the network
point of view). But for a neural network, this is to be considered
a feedback, connection from higher layer neuron back to lower layer
neurons. One might get false results if not waiting for 1long
enough. In our design, only one layer feedback is allowed. Thus, if

the results of two runs are the same, then the system should stop.
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This module checks if there are rules which can be combined
together. For example, we can combine

RULE 1: IF (conditions) THEN (do X),

RULE 2: IF (do X) THEN (do Y),
to form a new rule:

RULE 1.2: IF (conditions) THEN (do X) AND (do Y).
The optimization process also can be applied to variables which
only served as conjunctions between rules. For following example:

RULE 5: IF (conditions) THEN (set flagl),

RULE 6: IF (flagl is set) THEN (actions).
The variable "flagl" is used only as a conjunction between RULE 5
and RULE 6, then we can create a new rule:

RULE 5.6: IF (conditions) THEN (actions).

. tput tjio

The compiler needs to pass its analysis and symbol table as
well as the encoded rules to the next part =-- conversion. This
module produces output files that will be the input of the
conversion process.

22 v

The main purpose of this conversion process is to utilize the
information obtained from the compiling phase and to build the
expert system consisting of neural network elements. Therefore, the
major operations in this phase are assignment of weights and
calculation of thresholds for each neural element. Figure 13 is a
block diagram for this conversion procedure.

The first step of this process 1is the rule-to-neuron
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translation. For each rule in the conventional knowledge base,
there should have one or more neurons to match the rule. The
exception is that if the rule can be compressed by the optimization
module as discussed earlier. Then for each converted rule, weight
assignment should be performed according to the type of the rule.

The guidelines of how to assign weights are explained in

section 2. The type of neurons are AND, OR, as well as mixed type.—~ -

For a mixed type neuron, the program will separate the components

in the condition clause of the rule. This separation depends on the
forms of the rule. If it is in the CNF, then the first layer of the
sub-net contains several OR T-gates, followed by an AND T-gate. If
it is in the DNF, then the first layer composes a number of AND T-
gates, followed by an OR T-gate. - —»ro 5% Femar.

Threshold values of the converted neurons are defined
according to the guidelines given in section 2.. The process is
actually counting the number of inputs leading to the neuron, if
the neuron is a AND T-gate. For an OR T-gate, ‘the program simply
assigns a one.

After all rules in the system have been converted to ‘their
neurons, the operation of connecting them into a whole network is
applied. The last task of the conversion is to output the

constructed neural network which will simulate the :unctions of the

original rule-based expert systemn.

4. AN EXAMPLE OF A NEURAL NETWORK BASED EXPERT SYSTEM —~
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In order to provide a clear view of the design process of the
proposed neural network based expert system, we discuss a simple
_classification expert system example which containing fifteen
rules. The rule-base of this sample system is given below (Winston,
1984) .

Rl: IF the animal has hair

THEN the animal is a mammal . e larnEl
R2: 1IF the animal gives milk
THEN the animal is a mammal
R3: IF the animal has feathers . =~ .- z=otaory o
THEN the animal is a bird
R4: IF the animal flies and it lays eggs -~ =~~~ ~~77 7=
THEN it is a bird " -~ - - — = — =~
The above four determine the biocleogical class of mammal and bird. =
Rl and R2 has the OR relation, they can be combined into on rule: ==
R1.2: IF the animal has hair OR it gives milk
THEN the animal is a mammal. = & & roawic:

Similarly, R3 and R4 can be compressed into:

R3.4: IF the animal-has feathers OR, it:flies and it lays Iliw== =

eggs

THEN it is a bird.

Once we know that an animal is a mammal, two rules determine - — -
whether it is a carnivore.

RS: 1IF the animal is a mammal and it eats meat  .c. it =i~ =357

THEN the animal is a carnivore .. =~ =~ T 7 7" -

R6: IF the animal is a mammal and it has claws and pointed- -
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teeth : and its eyes point forward
THEN the animal is a carnivore
Under the category carnivore, we have rules to identify
specific animals, cheetah and tiger.
R7: IF the animal is a carnivore and it is brown and has dark
spots
THEN the animal ié a cheetah

RS IF the animal is a carnivore and it is brown and has

.

black stripes
THEN the animal is a tiger
Next, we give the rules to define ungulate category under
mammal, and determine its specific animals.
R9: IF the animal is a mammal and it has hooves
THEN the animal is an ungulate
R10: IF the animal is a mammal and it chews cud
THEN the animal is a ungulate and even-toed
R11l: IF the animal is a ungulate and has long neck, long legs
and it is brown and has dark spots
THEN the animal is a giraffe
R12: IF the animal is a unqulate and it is white and has black
stripes
THEN the animal is a zebra
Then we define three birds:
R13: IF the animal is a bird and it does not fly and has long
neck, long legs and it is black and white

THEN the animal is a ostrich
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R1l4: IF the animal is a bird and it does not fly and it swims

and it is black and white

THEN the animal is a penguin

R15: IF the animal is a bird and it is a good flyer

THEN it is an albatross
The AND/OR inference net which describes this sample system is
shown in Figure (Harvey, 1986). There are twelve output assertions
(consequent) , rectangular nodes in the figure, and 24 input
questions (antecedents). Four of these inputs serve both as
assertions and questions, MAMMAL, CARNIVORE, UNGULATE and BIRD.

There are four intermediate results marked by circles which
are merely connections between previous nodes and following nodes.
If it is possible, these nodes should be compressed either by hand
or by the optimization process of the program.

The corresponding neural network version of the sample expert
system is shown in Figure 15. This network has only one layer
compared to three layers in the AND/OR inference net. The four
assertion/question names are implemented as feed back variables.
The system will have a stable answer if the results of two runs are
the same. The weights and thresholds of these T-gates were assigned
as stated before. There are two mixed T-gates which should be
separated into two layers (BIRD and CARNIVORE). Since only a few
inputs_are involved in each of these gates, we were able to combine
the mixed AND/OR sub-net into one T-gate. However, this may not the
case always to a two level T-gate representation has to be used. An

exclusive-OR is a good example of this case.
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From this neural network example, we find that more than one
assertions can fire at the same time. This means that more than one
results can be reached after each run. The inferencing procedure
may stop at when the proper conclusion is obtained or at when two
adjacent runs yield the same answer.

For instance, if the inputs facts are FEATHERS, LONG NECK,
MAMMAL, HOOVES, DARK SPOTS, BROWN and LONG LEGS, then it will take
two runs to fire ALBATROSS and GIRAFFE at the same time. It would

need four runs to fire them in a conventional expert system which

uses the inference engine designed with an AND/OR tree. If the

machine which 1is used to implement the expert system is a

sequential one, it would take much more time to reach the answers.

5. CONCLUDING REMARKS r=l 7fiiis- <Xio--

As indicated by Fahlman and Hinton (1987), massively parallel

networks of simple neuron-like processing elements may hold the key .

to some important aspects of intelligence not captured by existing

artificial intelligence technology on serial machines. The purpose ' .-

of our design is to harness these characteristics of neural
networks for generating expert systems in real-time applications.
We have examined the process of constructing a neural network

based expert system from a given rule-base. From the discussion

presented and the results.obtained from examples,. it is clear that.

neural networks can be used as implementational vehicle for expert

systems for time-critical applications. This technique will-
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substantially simplify expert systems and lead to a great increase
in the speed performance.

For existing expert systems, the design of inference engine is
a big issue which significantly affects the efficiency of the
system. In all conventional expert systems, the inference engine is
separated from the knowledge base. In fact, the design Qf the
inference engine is made system independent.- However, -in our
proposed neural network based expert systems, there are actually no
designing part of the inference engine. The knowledge base and
inference engine of an expert system are built into one concrete
part -- the neurons and their connections. This feature is the same
as that in a data flow machine. This kind of system can be
considered as data-driven:system. Whether a rule .will:fire or not
depends on all input data led to this rule,” and there are no other
mechanism to control the firing process. While in a conventiocnal
expert system (to be considered as program-driven), the firing
process of rules depend not only on their inputs but also on the -
inference engine which controls the firing. By eliminating the
design of inference engine, the expert systems become simpler and
quicker.

Some points of this design are worth to present for future
study. One major difference between our design‘aqd other neural

network implementation of expert systems is that we omitted the

training part. In the situation where no rules are given, training ...

the system from given data is the only way to obtain a neural

network expert system. Another big advantage "of using neural
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networks is that it can fire rules with incomplete information.
Therefore, we may add to the system a training phase which will
take data to generate new rules.

The present implementation of the neural network based expert
system is simulated on a conventional computer. This greatly
restricts the abilities of the system, The resulting neural éystem
is a network of connections of simple T-gates, and the weights and
threshold values are fixed for a particular application. Thus, we
may use VLSI technology to design the system into hardware chips.
This will enormously benefiting the real-time applications. Imaging
that diagnosis is done by a built-in expert system chip instead of

a sizable computer for automatic machinery.
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ABSTRACT

Research on neural networks and fuzzy logic have pro-
gressed on two independent paths. In general, fuzzy logic
uses verbal information for handling higher-order logical re-
lations between inputs and outputs which-are not crisply de-
fined. On the other hand, neural networks are quZ obtain
information about systems from large input/output
tions and training or learning procedures. From these

nitions, it appears that fuzzy logic and neural network fulfi}l"

two complementary functions. Hence, a merger of these two
concepts could lead to powerful yet flexible knowledge pro-
cessing tools. This paper provides some insights along these

lines using the truck-backer-upper control probleu;. New’

network acchitectures by merging these two conc/e’pu and

- simulation results for the truck-back-upper problem using

the new acchitecture are also shown in this pap? .
INTRODUCTION //

Both neural network and fuzzy expert sy/stem are systems
that map an input u (a vector of size I‘fx 1) into an out-
put y (a vector of A x 1) by the functlon f:u—y In
a simple neural aetwork, the mappmg is performed in the
system by weighing each and every inputs, summing the re-
sults, subtracting a bias value and passing the result through
a non-linear function which may produce a binary or bipolar
or coatinuous value [1,2]. Such networks may be cascaded to
propagate the intermediate results to higher levels for more
sophisticated problems. [n the case of fuzzy expert systems,
the ranges of the inputs and outputs are split into smaller
and overiapping ranges or fuzzy sets. A fuzzy membership
function is associated to each fuzzy subset. The mechanism
governing the mapping from the input fuzzy sets to the out-
put fuzzy sets is a collection of fuzzy rules — {uzzy rule base
or fuzzy associative memories (FAM) [3,4]. The mapping
from the inputs u to the output y is achieved through these
fuzzy rules, the membership functions, and defuzzification
procedure.

There are similarities and differences between these two
mapping systems. The similarities include provision for deal-
ing with imprecise data or data corrupted by noise, having
similac primitives or building blocks to produce nonlinear
mapping (membership functions, fuzzy rules, MAX~-MIN or

‘centroid operations, v3. sigmoid functions in neural aet-

he major difference is that fuzzy expert systems
rules for inferencing while neural networks are data-
. Therefore, {uzzy expert systems can be coasidered as
oscopic tool for information processing, whereas neu-

"networks are microscopic in nature. The advantage of
eural network is their ability to learn the mapping through

/training. The advantages of fuzzy expert systems are their

ability to provide nonlinear mapping through the member-
ship functions and fuzzy rules, and the ability to deal with
fuzzy information and incomplete and/or imprecise data. By
rging the advantages of these two systems, one can arrive
at a more powerful yet more flexible system for inferencing
and leartting. This concept will be explained through the use

of results fob{he truck-backer-upper control problem.

PRO M DEFINITION

The truck backer-upper zontrol is a typical nonlinear coo-
trol problem where a controller to successfully back up a
truck to a loading dock from any reasonable initial location
has to be designed. Nguyen and Widrow {5} showed that a
nonlinear controller using a two layer neural network archi-
tectura with 26 adaptive neural elements caa be successfully
trained. Recently, Kong and Kosko (6] compared the perfor-
mance of such a neural network based controller with that
of a controller based on fuzzy expert system composed of
35 rules. They observed that even that simple [uzzy expert
system lead to smoother trajectories thaa that produced by

the two-layer neural network. If _their observations are valid -

in general, it is desirable to arrive at a logical explanation -~

foc the differences in the performances. More importantly,
as stated earlier, approaches that can cetain the attractive
properties of neural networks and at the same time obtain
performances comparable to that of fuzzy expert systems
need to be developed.

Figure 1 shows the loading zone of the truck-backer-
upper problem and inputs and output variables of the sys-
tem. If enough clearance is given between the truck and the
loading dock, then the y-position can be omitted as a input
to tupe the controller. The ranges of the inputs, x-position
and the truck orientation angle 4, and the output, steering
sxgnal $, are given as:

é: (0, 360] x: [0 IOOI 0 { -30, 30]
Having identified the variables and their ranges, fuzzy sub-

o




